Current Issue

Digital & Print Edition

Scientists pair up two stars from the world of chemistry

| 10/04/2016

Hardly any material is currently receiving as much attention in research as graphene. It is flexible, extremely thin and transparent, while at the same time it has very high tensile strength and conducts electricity, ideal prerequisites for a wide variety of application areas. However, using graphene to capture solar energy or as a gas sensor requires other specific properties as well. These properties can be achieved by fusing functional molecules with the carbon layer.

In previous research, scientists were primarily concerned with wet-chemical methods for attaching the molecules to the surface of the material. Together with his colleagues, Molecular Engineering at Functional Interfaces Professor Wilhelm Auwärter decided to take a different approach: They were able to link porphyrin molecules to graphene in a controlled manner in an ultra-high vacuum using the catalytic properties of a silver surface on which the graphene layer rested. When heated, the porphyrin molecules lose hydrogen atoms at their periphery and can thus form new bonds with the graphene edges.

Clean and controllable

"This method creates a clean and controllable environment," explains Professor Auwärter. "We can see exactly how the molecules bond and what types of bonds occur." Here the researchers use the latest in modern atomic force microscopy to depict the chemical structure of individual molecules, the atomic "skeletons," so to speak.

For the first time the scientists have succeeded in attaching functional molecules to the edges of graphene covalently, i.e. with a stable chemical bond. "We want to modify only the edges of the material; this way the graphene's positive properties are not destroyed," says Auwärter.

The researchers chose the porphyrin molecules as the partner for graphene because of their special properties. "For example, porphyrins are responsible for transporting oxygen in hemoglobin," he continues. The molecules change their properties depending on which metals are at their center and can take on various different tasks, e.g. specifically bonding with gas molecules such as oxygen and carbon dioxide.

In the future this new method may make it possible to bond other molecules to graphene as well. The researchers also want to take even better control of the reaction, achieving targeted modifications by attaching molecules to carbon nanostructures such as graphene ribbons. These nanostructures are of central importance in electronic applications.


Story Source:

Materials provided by Technical University Munich.

RELATED HIGHLIGHTS

  • Indian researcher produces stable solar cells

    | 10/13/2016

    In a first, a researcher from Pune’s Indian Institute of Science Education and Research (IISER) has successfully produced a stable, high-efficiency, all-inorganic perovskite nanocrystal solar cells. The new material has 10.77% efficiency to convert sunlight to electricity. The results were pu...More

  • Scientists pair up two stars from the world of chemistry

    | 10/04/2016

    Hardly any material is currently receiving as much attention in research as graphene. It is flexible, extremely thin and transparent, while at the same time it has very high tensile strength and conducts electricity, ideal prerequisites for a wide variety of application areas. However, using graphen...More

  • Rethink how chemical hazards are tested

    | 08/20/2016

    Around the world, safety regulations are being revised as new information about the health and environmental effects of chemicals becomes available. In June, US President Barack Obama signed the first bill to reform the Toxic Substances Control Act since its enactment 30 years ago. The revised act m...More

  • First Dengue Vaccine In Asia Approved In The Phili

    Vivek Dwivedi | 01/06/2016

    The vaccines division of Sanofi, has been granted marketing approval for Dengvaxia® in the Philippines, making it the first vaccine to be licensed for the prevention of dengue in Asia. The Philippines’ Food and Drug Administration approved Dengvaxia®, a tetravalent dengue vaccine, for the preven...More

  • Nano-coating makes coaxial cables lighter

    Author Name | 26/10/2015

    The Rice lab of Professor Matteo Pasquali has developed a coating that could replace the tin-coated copper braid that transmits the signal and shields the cable from electromagnetic interference. The metal braid is the heaviest component in modern coaxial data cables....More

FREE DOWNLOAD

SCIENCE TOADY MAGAZINE

Facebook Reveals Its First Full-Size Internet Drone. Facebook Reveals Its First Full-Size Internet Drone

GET IT NOW !