Fatal attraction of Caenorhabditis elegans to predatory fungi

Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation.


Fig: The artA gene cluster is required for 6-MSA and arthrosporol biosynthesis

The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.

Yu, X., Hu, X., Pop, M. et al. Fatal attraction of Caenorhabditis elegansto predatory fungi through 6-methyl-salicylic acid. Nat Commun 12,5462 (2021). https://doi.org/10.1038/s41467-021-25535-1

Leave a Reply

Your email address will not be published. Required fields are marked *