Weak impact of microorganisms on Ca, Mg-bearing silicate weathering

Assessment of the microbial impact on mineral dissolution is crucial for a predictive understanding of basic (Ca, Mg bearing) silicate weathering and the associated CO2 consumption, bioerosion, and CO2 storage in basaltic rocks. However, there are controversies about the mechanism of microbial effect, which ranges from inhibiting via nil to accelerating. Here we studied diopside interaction with the heterotrophic bacterium Pseudomonas reactants and the soil fungus Chaetomium brasiliense using a combination of mixed-flow and batch reactors and in situ (AFM) and ex situ (SEM) microscopy.

figure1

Fig: Results of diopside dissolution in experimental reactors

The results provide new nano-level insights into the degree to which microorganisms modify silicate dissolution. Taking into account negligible effects of organic ligands on diopside dissolution as reported earlier, we conclude that the microbial effect on Ca-Mg silicates is weak and the acceleration of dissolution of “basic” silicate rocks in the presence of soil biota is solely due to pH decrease in porewaters.

Pokrovsky, O.S., Shirokova, L.S., Zabelina, S.A. et al. Weak impact of microorganisms on Ca, Mg-bearing silicate weathering. npj Mater Degrad 5, 51 (2021). https://doi.org/10.1038/s41529-021-00199-w

Leave a Reply

Your email address will not be published. Required fields are marked *