Team uses 3D printing to optimize flow-through electrodes for electrochemical reactors

LLNL Optimizes Flow-Through Electrodes for Electrochemical Reactors with 3D Printing

For the first time, Lawrence Livermore National Laboratory engineers have 3D-printed carbon flow-through electrodes (FTEs)—porous electrodes responsible for the reactions in the reactors—from graphene aerogels. By capitalizing on the design freedom afforded by 3D printing, researchers demonstrated they could tailor the flow in FTEs, dramatically improving mass transfer—the transport of liquid or gas reactants through the electrodes and onto the reactive surfaces.

To take advantage of the growing abundance and cheaper costs of renewable energy, Lawrence Livermore National Laboratory (LLNL) scientists and engineers are 3D printing flow-through electrodes (FTEs), core components of electrochemical reactors used for converting CO2 and other molecules to useful products.

At LLNL we are pioneering the use of three-dimensional reactors with precise control over the local reaction environment. Novel, high-performance electrodes will be essential components of next-generation electrochemical reactor architectures. This advancement demonstrates how we can leverage the control that 3D printing capabilities offer over the electrode structure to engineer the local fluid flow and induce complex, inertial flow patterns that improve reactor performance.

Through 3D printing, researchers demonstrated that by controlling the electrodes’ flow channel geometry, they could optimize electrochemical reactions while minimizing the tradeoffs seen in FTEs made through traditional means. Typical materials used in FTEs are “disordered” media, such as carbon fiber-based foams or felts, limiting opportunities for engineering their microstructure. While cheap to produce, the randomly ordered materials suffer from uneven flow and mass transport distribution, researchers explained.

The team reported the FTEs, printed in lattice structures through a direct ink writing method, enhanced mass transfer over previously reported 3D printed efforts by 1-2 orders of magnitude, and achieved performance on par with conventional materials.

Because the commercial viability  and widespread adoption of electrochemical reactors is dependent on attaining greater mass transfer, the ability to engineer flow in FTEs will make the technology a much more attractive option for helping solve the global energy crisis, researchers said. Improving the performance and predictability of 3D-printed electrodes also makes them suitable for use in scaled-up reactors for high efficiency electrochemical converters.

Gaining fine control over electrode geometries will enable advanced electrochemical reactor engineering that wasn’t possible with previous generation electrode materials. Engineers will be able to design and manufacture structures optimized for specific processes. Potentially, with development of manufacturing technology, 3D-printed electrodes may replace conventional disordered electrodes for both liquid and gas type reactors.

Work is ongoing at LLNL to produce more robust electrodes and reactor components at higher resolutions through light-based 3D polymer printing techniques such as projection micro-stereolithography and two-photon lithography, flowed by metallization. The team also will leverage high performance computing to design better performing structures and continue deploying the 3D-printed electrodes in larger and more complex reactors and full electrochemical cells.

Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures, Proceedings of the National Academy of Sciences (2021).

Leave a Reply

Your email address will not be published. Required fields are marked *