Biocompatible hydrogel materials can rapidly recover from mechanical stress

Hydrogels are polymer materials made mostly from water. They can be used in a wide range of medical and other applications. However, previous incarnations of the materials suffered from repeated mechanical stress and would easily become deformed. A novel crystal that can reversibly form and deform, allows hydrogels to rapidly recover from mechanical stress. This opens up the use of such biocompatible materials in the field of artificial joints and ligaments.

Many of us suffer the occasional sports injury or experience some kind of pain relating to joints and ligaments at some point in our lives. For serious injuries of this nature, there is often little that can be done to repair the damage. But a new development in the field of water-rich polymer materials known as hydrogels could find its way to the operating room in around 10 years or so. And they should stand up to the same mechanical stresses our natural joint and ligament tissues experience too. They’re called self-reinforced gels.

“The problem with existing hydrogels is that they can be mechanically weak and so need strengthening,” said Associate Professor Koichi Mayumi from the Institute for Solid State Physics at the University of Tokyo. “However, previous methods to toughen them up only work a limited number of times, or sometimes just once. Those gels do not recover rapidly from stresses such as impacts well at all. So we looked at other materials which do show strong recoverability, such as natural rubber. Taking inspiration from these, we created a hydrogel that exhibits rubberlike toughness and recoverability whilst maintaining flexibility.

Previous examples of toughened hydrogels use so-called sacrificial bonds which break when deformed. The destruction of the sacrificial bonds would dissipate mechanical energy giving the material strength, but the sacrificial bonds would take time, sometimes minutes, to recover. And sometimes they would not recover at all.

Healing hydrogels

Fig: Schematic illustrations and photos of self-reinforced gel with pre-notch under stretching and releasing. Strain-induced crystallization at the crack tip prevents crack propagation.

The next stage of research for us is to try different arrangements of molecules. If we can simplify the structures we use, then we can reduce the cost of materials which will also help accelerate adoption of them by the medical industry.

C. Liu el al., “Tough hydrogels with rapid self-reinforcement,” Science (2021).science.sciencemag.org/cgi/doi … 1126/science.aaz6694

Leave a Reply

Your email address will not be published. Required fields are marked *