Leaf nutrient content and transcriptomic analyses

This study is about Endive (Cichorium endivia L.), a vegetable consumed as fresh or packaged salads, is mostly cultivated outdoors and known to be sensitive to waterlogging in terms of yield and quality. Phenotypic, metabolic and transcriptomic analyses were used to study variations in curly- (‘Domari’, ‘Myrna’) and smooth-leafed (‘Flester’, ‘Confiance’) cultivars grown in short-term waterlog due to rainfall excess before harvest. After recording loss of head weights in all cultivars (6-35%), which was minimal in ‘Flester’, NMR untargeted profiling revealed variations as influenced by genotype, environment and interactions, and included drop of total carbohydrates (6–50%) and polyols (3–37%), gain of organic acids (2–30%) and phenylpropanoids (98–560%), and cultivar-specific fluctuations of amino acids (−37 to +15%). The analysis of differentially expressed genes showed GO term enrichment consistent with waterlog stress and included the carbohydrate metabolic process.


Fig: Climate condition, leaf parameters and metabolite explorative analysis

The loss of sucrose, kestose and inulin recurred in all cultivars and the sucrose-inulin route was investigated by covering over 50 genes of sucrose branch and key inulin synthesis (fructosyltransferases) and catabolism (fructan exohydrolases) genes. The lowered expression of a sucrose gene subset together with that ofSUCROSE:SUCROSE-1-FRUCTOSYLTRANSFERASE (1-SST) may have accounted for sucrose and kestose contents drop in the leaves of waterlogged plants. Two anti-correlated modules harbouring candidate hub-genes, including 1-SST, were identified by weighted gene correlation network analysis, and proposed to control positively and negatively kestose levels. In silico analysis further pointed at transcription factors of GATA, DOF, WRKY types as putative regulators of 1-SST.

Testone, G., Sobolev, A.P., Mele, G. et al. Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents. Hortic Res 8, 92 (2021). https://doi.org/10.1038/s41438-021-00513-2

Leave a Reply

Your email address will not be published. Required fields are marked *