Wobble tRNA modification and hydrophilic amino acid

Regulation of mRNA translation elongation impacts nascent protein synthesis and integrity and plays a critical role in disease establishment. Here, we investigate features linking regulation of codon-dependent translation elongation to protein expression and homeostasis. Using knockdown models of enzymes that catalyze the mcm5s2 wobble uridine tRNA modification (U34-enzymes), we show that gene codon content is necessary but not sufficient to predict protein fate. While translation defects upon perturbation of U34-enzymes are strictly dependent on codon content, the consequences on protein output are determined by other features. Specific hydrophilic motifs cause protein aggregation and degradation upon codon-dependent translation elongation defects.


Fig: mRNA codon content predicts translation dependency on U34-enzymes.

Accordingly, the combination of codon content and the presence of hydrophilic motifs define the proteome whose maintenance relies on U34-tRNA modification. Together, these results uncover the mechanism linking wobble tRNA modification to mRNA translation and aggregation to maintain proteome homeostasis.

Rapino, F., Zhou, Z., Roncero Sanchez, A.M. et al. Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate.Nat Commun 12, 2170 (2021). https://doi.org/10.1038/s41467-021-22254-5

Leave a Reply

Your email address will not be published. Required fields are marked *